The least positive integer N.

https://www.linkedin.com/groups/8313943/8313943-6412317004698513410
Determine the least positive integer N such that for all integers $n>N$,

$$
\left(n^{n+1} /(n+1)^{n}\right)^{n}<n!<\left(n^{n+1} /(n+1)^{n}\right)^{n+1}
$$

Solution by Arkady Alt, San Jose, California, USA.
Let $a_{n}:=\left(n^{n+1} /(n+1)^{n}\right)^{n}, b_{n}:=n!$ and $c_{n}:=\left(n^{n+1} /(n+1)^{n}\right)^{n+1}, n \in \mathbb{N}$.

1. Proof of inequality $a_{n}<b_{n}, \forall n \in \mathbb{N}$ (by Math Induction).

First we will prove that for any $n \in \mathbb{N}$ holds inequality
(1) $\frac{a_{n+1}}{a_{n}}<\frac{b_{n+1}}{b_{n}}$.

We have $\frac{a_{n+1}}{a_{n}}=\frac{(n+1)^{(n+2)(n+1)}}{(n+2)^{(n+1)^{2}}} \cdot \frac{(n+1)^{n^{2}}}{n^{(n+1) n}}=\frac{(n+1)^{n+2}\left(n^{2}+2 n+1\right)^{n(n+1)}}{(n+2)^{n+1}\left(n^{2}+2 n\right)^{n(n+1)}}$,
$\frac{b_{n+1}}{b_{n}}=n+1$ and, therefore, $(\mathbf{1}) \Leftrightarrow \frac{(n+1)^{n+2}\left(n^{2}+2 n+1\right)^{n(n+1)}}{(n+2)^{n+1}\left(n^{2}+2 n\right)^{n(n+1)}}<n+1 \Leftrightarrow$
$\left(\frac{n^{2}+2 n+1}{n^{2}+2 n}\right)^{n(n+1)}<\left(\frac{n+2}{n+1}\right)^{n+1} \Leftrightarrow\left(\frac{n^{2}+2 n+1}{n^{2}+2 n}\right)^{n}<\frac{n+2}{n+1} \Leftrightarrow$
$1-\frac{1}{n+2}<\left(1-\frac{1}{n^{2}+2 n+1}\right)^{n}$,
where latter inequality holds for any $n \in \mathbb{N}$ because by Bernoulli's Inequality
$\left(1-\frac{1}{n^{2}+2 n+1}\right)^{n} \geq 1-\frac{n}{n^{2}+2 n+1}$ and $-\frac{n}{n^{2}+2 n+1}>-\frac{1}{n+2} \Leftrightarrow n(n+2)<n^{2}+2 n+$ Since $a_{1}=\frac{1}{2}<1=b_{1}$ and for any $n \in \mathbb{N}$ assuming $a_{n}<b_{n}$ and using inequality (1) we obtain $a_{n+1}=a_{n} \cdot \frac{a_{n+1}}{a_{n}}<b_{n} \cdot \frac{b_{n+1}}{b_{n}}=b_{n+1}$.
Thus, by Math Induction $\left(n^{n+1} /(n+1)^{n}\right)^{n}<n!, \forall n \in \mathbb{N}$.
2. Proof of inequality $b_{n}<c_{n}, \forall n \in \mathbb{N} \backslash\{1\}$.

First we will prove that for any $n \in \mathbb{N}$ holds inequality
(2) $\frac{b_{n+1}}{b_{n}}<\frac{c_{n+1}}{c_{n}}$.

Since $\frac{c_{n+1}}{c_{n}}=\frac{(n+1)^{(n+2)^{2}}}{(n+2)^{(n+1)(n+2)}} \cdot \frac{(n+1)^{n(n+1)}}{n^{(n+1)^{2}}}=\frac{(n+1)^{2(n+1)^{2}} \cdot(n+1)^{n+2}}{\left(n^{2}+2 n\right)^{(n+1)^{2}}(n+2)^{n+1}}$ then $\frac{b_{n+1}}{b_{n}}<\frac{c_{n+1}}{c_{n}} \Leftrightarrow n+1<\frac{(n+1)^{2(n+1)^{2}} \cdot(n+1)^{n+2}}{\left(n^{2}+2 n\right)^{(n+1)^{2}}(n+2)^{n+1}} \Leftrightarrow 1<\frac{(n+1)^{2(n+1)^{2}} \cdot(n+1)^{n+1}}{\left(n^{2}+2 n\right)^{(n+1)^{2}}(n+2)^{n+1}} \Leftrightarrow$
$1<\frac{(n+1)^{2(n+1)} \cdot(n+1)}{\left(n^{2}+2 n\right)^{n+1}(n+2)} \Leftrightarrow 1+\frac{1}{n+1}<\left(1+\frac{1}{n^{2}+2 n}\right)^{n+1}$
where latter inequality holds for any $n \in \mathbb{N}$ because by Bernoulli's Inequality
$\left(1+\frac{1}{n^{2}+2 n}\right)^{n+1}>1+\frac{n+1}{n^{2}+2 n}$ and $\frac{n+1}{n^{2}+2 n}>\frac{1}{n+1} \Leftrightarrow 1>0$.
Since $n!<\left(\frac{n+1}{e}\right)^{n+1} e$ and $\left(\frac{n+1}{e}\right)^{n+1} e<\left(n^{n+1} /(n+1)^{n}\right)^{n+1} \Leftrightarrow$
$\frac{n+1}{e} e^{1 /(n+1)}<n^{n+1} /(n+1)^{n} \Leftrightarrow\left(1+\frac{1}{n}\right)^{n+1}<e^{1-1 /(n+1)}$
$\frac{n+1}{e} e^{1 /(n+1)}<n^{n+1} /(n+1)^{n} \Leftrightarrow\left(1+\frac{1}{n}\right)^{n}$.

By direct calculation we can see that $b_{2}=2, c_{2}=\left(2^{3} / 3^{2}\right)^{3}=\frac{512}{729}<2=b_{2}$, $b_{3}=6, c_{3}=\left(3^{4} / 4^{3}\right)^{4}=2.5658<6=b_{3}, \ldots, c_{16}<b_{16}\left(c_{16}-b_{16} \approx-5.726 \times 10^{11}\right)$. But $b_{17}<c_{17}$ because $\left(17^{17+1} /(17+1)^{17}\right)^{17+1}-17$! $\approx 8.1621 \times 10^{11}$. Inequality $b_{17}<c_{17}$ can be taken as the base of Math Induction. Step of Math Induction:
For any natural $n \geq 17$ assuming $b_{n}<c_{n}$ and using inequality (2)
we obtain $b_{n+1}=b_{n} \cdot \frac{b_{n+1}}{b_{n}}<c_{n} \cdot \frac{c_{n+1}}{c_{n}}=c_{n+1}$.
Thus, 16 is the least natural N such that for all natural $n>N$ holds inequality $n!<\left(n^{n+1} /(n+1)^{n}\right)^{n+1}$ and inequality $\left(n^{n+1} /(n+1)^{n}\right)^{n}<n!$ holds for any natural n.

